Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Fish Shellfish Immunol ; 148: 109503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479567

RESUMO

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes ß-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.


Assuntos
Timosina , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Astacoidea , Alimentos Marinhos , Antivirais
2.
Fish Shellfish Immunol ; 146: 109432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331056

RESUMO

White Spot Disease is one of the most harmful diseases of the red tail shrimp, which can cause devastating economic losses due to the highest mortality up to 100% within a few days. MicroRNAs (miRNAs) are large class of small noncoding RNAs with the ability to post-transcriptionally repress the translation of target mRNAs. MiRNAs are considered to have a significant role in the innate immune response of crustaceans, particularly in relation to antiviral defense mechanisms. Numerous crustacean miRNAs have been verified to be required in host immune defense against viral infection, however, till present, the miRNAs functions of F. penicillatus defense WSSV infection have not been studied yet. Here in this study, for the first time, miRNAs involved in the F. penicillatus immune defense against WSSV infection were identified using high-throughput sequencing platform. A total of 432 miRNAs were obtained including 402 conserved miRNAs and 30 novel predicted miRNAs. Comparative analysis between the WSSV-challenged group and the control group revealed differential expression of 159 microRNAs in response to WSSV infection. Among these, 48 were up-regulated and 111 were down-regulated. Ten candidate MicroRNAs associated with immune activities were randomly selected for qRT-PCR analysis, which confirming the expression profiling observed in the MicroRNA sequencing data. As a result, most differentially expressed miRNAs were down-regulated lead to increase the expression of various target genes that mediated immune reaction defense WSSV infection, including genes related to signal transduction, Complement and coagulation cascade, Phagocytosis, and Apoptosis. Furthermore, the genes expression of the key members in Toll and Imd signaling pathways and apoptotic signaling were mediated by microRNAs to activate host immune responses including apoptosis against WSSV infection. These results will help to understand molecular defense mechanism against WSSV infection in F. penicillatus and to develop an effective WSSV defensive strategy in shrimp farming.


Assuntos
MicroRNAs , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Hepatopâncreas , MicroRNAs/metabolismo , Imunidade Inata/genética , Fagocitose
3.
mBio ; 15(3): e0313623, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38358252

RESUMO

Disease emergence is the consequence of host-pathogen-environment interactions. Ammonia is a key stress factor in aquatic environments that usually increases the risk of pathogenic diseases in aquatic animals. However, the molecular regulatory mechanisms underlying the enhancement of viral infection following ammonia stress remain largely unknown. Here, we found that ammonia stress enhances white spot syndrome virus infection in kuruma shrimp (Marsupenaeus japonicus) by targeting the antiviral interferon-like system through heat shock factor 1 (Hsf1). Hsf1 is an ammonia-induced transcription factor. It regulates the expression of Cactus and Socs2, which encode negative regulators of NF-κB signaling and Jak/Stat signaling, respectively. By inhibiting these two pathways, ammonia-induced Hsf1 suppressed the production and function of MjVago-L, an arthropod interferon analog. Therefore, this study revealed that Hsf1 is a central regulator of suppressed antiviral immunity after ammonia stress and provides new insights into the molecular regulation of immunity in stressful environments. IMPORTANCE: Ammonia is the end product of protein catabolism and is derived from feces and unconsumed foods. It threatens the health and growth of aquatic animals. In this study, we demonstrated that ammonia stress suppresses shrimp antiviral immunity by targeting the shrimp interferon-like system and that heat shock factor 1 (Hsf1) is a central regulator of this process. When shrimp are stressed by ammonia, they activate Hsf1 for stress relief and well-being. Hsf1 upregulates the expression of negative regulators that inhibit the production and function of interferon analogs in shrimp, thereby enhancing white spot syndrome viral infection. Therefore, this study, from a molecular perspective, explains the problem in the aquaculture industry that animals living in stressed environments are more susceptible to pathogens than those living in unstressed conditions. Moreover, this study provides new insights into the side effects of heat shock responses and highlights the complexity of achieving cellular homeostasis under stressful conditions.


Assuntos
Penaeidae , Viroses , Vírus da Síndrome da Mancha Branca 1 , Animais , Interferons/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Amônia/metabolismo , Resposta ao Choque Térmico
4.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189252

RESUMO

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Assuntos
Astacoidea , Autofagia , Vírus da Síndrome da Mancha Branca 1 , Animais , Astacoidea/metabolismo , Autofagossomos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Vírus da Síndrome da Mancha Branca 1/fisiologia
5.
Fish Shellfish Immunol ; 146: 109379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242264

RESUMO

Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Catepsina C/genética , Sequência de Bases , Regulação da Expressão Gênica , Proteínas de Artrópodes , Clonagem Molecular , Filogenia , Imunidade Inata/genética , Resistência à Doença/genética
6.
Fish Shellfish Immunol ; 144: 109286, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097095

RESUMO

The forkhead box transcription factor O family protein (FOXO) acts as a transcription factor that regulates biological processes regarding DNA repair, immunity, cell cycle regulation, and other biological processes. In this study, EcFOXO was identified from the ridgetail white prawn, Exopalaemon carinicauda. EcFOXO protein contains multiple low-complexity regions and a forkhead (FH) domain. Phylogenetic tree showed that EcFOXO is clustered with crustacean FOXOs. The amino acid sequences of its FH domain are highly similar to the FH domain of FOXOs from other crustaceans. The expression of EcFOXO is altered after white spot syndrome virus (WSSV) stimulation in hepatopancreas and gills. The relationship between EcFOXO and EcRelish was explored by RNA interference (RNAi). Results showed that EcFOXO and EcRelish could positively regulate each other's expression. The expression levels of various antimicrobial peptides (AMPs) significantly reduced after interfering with EcFOXO or EcRelish. These results suggest a positive regulatory loop between EcFOXO and EcRelish, which participates in the innate immunity of ridgetail white prawn by regulating the expression of AMPs during WSSV infection. This study enriches the knowledge about the regulatory mechanism of FOXO in the innate immunity of crustaceans.


Assuntos
Palaemonidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Sequência de Bases , Peptídeos Antimicrobianos , Vírus da Síndrome da Mancha Branca 1/fisiologia , Filogenia , Sequência de Aminoácidos
7.
Fish Shellfish Immunol ; 145: 109317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142020

RESUMO

Long noncoding RNA (lncRNA) is a potential regulator of biological processes, including immunity, reproduction, and development. Although several transcriptome studies have focused on responses of viral infections in several organisms, the role of lncRNAs in viral responses in shrimp is still unclear. Therefore, this work aimed to identify putative lncRNAs and study their role in white spot syndrome virus (WSSV) infection in white shrimp. The hepatopancreas transcriptome from WSSV infected shrimp was analyzed in silico to identify putative lncRNAs. Among 221,347 unigenes of the de novo assembled transcriptome, 44,539 putative lncRNAs were identified, 32 of which were differentially expressed between WSSV-infected and control shrimp. Five candidate lncRNAs were validated for their expressions in shrimp tissues and in response to WSSV infection. Lnc164 was chosen for further investigation of its role in WSSV infection. Knockdown of lnc164 prolonged survival of shrimp when challenged with WSSV, suggesting a role in shrimp immunity. In addition, lnc164 was not directly involved in the control of total hemocytes and viral loads in hemolymph of WSSV-infected shrimp. A set of lnc164-regulated genes was obtained by RNA sequencing among which 251 transcripts were differentially expressed between lnc164 knockdown and control shrimp. Six immune-related genes were validated for their expression profiles. Our work sheds light on lncRNA profiles in L. vannamei in response to WSSV infection and paves the way to a functional study of lnc164 in host antiviral response.


Assuntos
Penaeidae , RNA Longo não Codificante , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Hepatopâncreas , Transcriptoma , Crustáceos/genética
8.
Fish Shellfish Immunol ; 145: 109328, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142022

RESUMO

In WSSV pathogenesis, the molecular mechanisms and the key host factors that regulate the viral replication and morphogenesis remain unclear. However, like most viruses, WSSV is known to induce metabolic reprogramming in several metabolic pathways including the host glutamine metabolism, and several recent reports have suggested that the sirtuins SIRT3, SIRT4, and SIRT5, which belong to a family of NAD+-dependent deacetylases, play an important role in this regulation. Here we focus on characterizing LvSIRT4 from Litopenaeus vannamei and investigate its role in regulating glutamine dehydrogenase (GDH), an important enzyme that promotes glutaminolysis and viral replication. We found that LvSIRT4 silencing led to significant decreases in both WSSV gene expression and the number of viral genome copies. Conversely, overexpression of LvSIRT4 led to significant increases in the expression of WSSV genes and the WSSV genome copy number. Immunostaining in Sf9 insect cells confirmed the presence of LvSIRT4 in the mitochondria and the co-localization of LvSIRT4 and LvGDH in the same cellular locations. In vivo gene silencing of LvSIRT4 significantly reduced the gene expression of LvGDH whereas LvSIRT4 overexpression had no effect. However, neither silencing nor overexpression had any effect on the protein expression levels of LvGDH. Lastly, although GDH activity in uninfected shrimp was unchanged, the GDH enzyme activity in WSSV-infected shrimp was significantly increased after both LvSIRT4 silencing and overexpression. This suggests that although there may be no direct regulation, LvSIRT4 might still be able to indirectly regulate LvGDH via the mediation of one or more WSSV proteins that have yet to be identified.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Glutamina/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Genoma Viral , Inativação Gênica , Penaeidae/genética , Replicação Viral
9.
Fish Shellfish Immunol ; 145: 109303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104694

RESUMO

In this study, we examined the impact of geniposide on the innate immunity of the mud crab Scylla paramamosain, specifically in relation to WSSV infection. Through the use of in vitro cell culture experiments, we assessed the effects of geniposide on various parameters of hemocyte activity in S. paramamosain. Our findings revealed that high doses of geniposide inhibited hemocyte growth, with an optimal dose of 100 mg/kg determined. Additionally, we observed that geniposide increased the total hemocyte counts in S. paramamosain following WSSV infection. Geniposide also enhanced the enzymatic activities in hemolymph following treatment. The enzymes affected by geniposide encompassed ACP (acid phosphatase), POD (phenol oxidase catalase), PO (phenoloxidase), SOD (superoxide dismutase), CAT (catalase), and LZM (lysozyme). Furthermore, the activities of ACP, POD, PO, and LZM were also observed to increase subsequent to infection with WSSV. Notably, geniposide was found to enhance the phagocytosis of V. alginolyticus within the hemocytes. Geniposide can reduce hemocyte apoptosis rates after treatment, as well as hemocytes infected with WSSV. Furthermore, geniposide treatment significantly up-regulated the expression level of Myosin, but expression levels of Astakine, C-type lectin (CTL), STAT, JAK, proPO, minichromosome maintenance protein (MCM7), caspase-3 and crustin were down-regulated in the hemocytes. Additionally, geniposide treatment inhibited WSSV replication in hemocytes of S. paramamosain, and enhanced the survival rates of mud crabs following WSSV infection. These experimental results provide evidence that geniposide can improve the immune response by regulating humoral immunity and cellular immunity, and enhance pathogen resistance in S. paramamosain.


Assuntos
Braquiúros , Iridoides , Vírus da Síndrome da Mancha Branca 1 , Animais , Catalase , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes/genética , Imunidade Inata/genética , Hemócitos , Antivirais
10.
Fish Shellfish Immunol ; 144: 109299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104700

RESUMO

Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Ciclofilina A/genética , RNA Mensageiro/metabolismo , Antivirais/metabolismo , Hemócitos
11.
Fish Shellfish Immunol ; 142: 109171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858788

RESUMO

Protein-protein interactions (PPIs) are essential for understanding cell physiology in normal and pathological conditions, as they might involve in all cellular processes. PPIs have been widely used to elucidate the pathobiology of human and plant diseases. Therefore, they can also be used to unveil the pathobiology of infectious diseases in shrimp, which is one of the high-risk factors influencing the success or failure of shrimp production. PPI network analysis, specifically host-pathogen PPI (HP-PPI), provides insights into the molecular interactions between the shrimp and pathogens. This review quantitatively analyzed the research trends within this field through bibliometric analysis using specific keywords, countries, authors, organizations, journals, and documents. This analysis has screened 206 records from the Scopus database for determining eligibility, resulting in 179 papers that were retrieved for bibliometric analysis. The analysis revealed that China and Thailand were the driving forces behind this specific field of research and frequently collaborated with the United States. Aquaculture and Diseases of Aquatic Organisms were the prominent sources for publications in this field. The main keywords identified included "white spot syndrome virus," "WSSV," and "shrimp." We discovered that studies on HP-PPI are currently quite scarce. As a result, we further discussed the significance of HP-PPI by highlighting various approaches that have been previously adopted. These findings not only emphasize the importance of HP-PPI but also pave the way for future researchers to explore the pathogenesis of infectious diseases in shrimp. By doing so, preventative measures and enhanced treatment strategies can be identified.


Assuntos
Doenças Transmissíveis , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Humanos , Bibliometria , China , Tailândia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Interações Hospedeiro-Patógeno
12.
Fish Shellfish Immunol ; 142: 109123, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813154

RESUMO

The NF-κB pathway plays an important role in immune regulation. Basigin, an immunoglobulin superfamily membrane protein, is involved in the activation of NF-κB. However, its role in NF-κB signaling in response to pathogen infection remains unclear. In this study, we identified the Basigin gene from Pacific white shrimp, Penaeus vannamei, a representative species for studying the innate immune system of invertebrates. Basigin promoted the degradation of the IκB homolog Cactus, facilitated the nuclear translocation of the NF-κB family member Dorsal, and positively regulated the expression of Dorsal pathway downstream antimicrobial peptide genes. Interestingly, recombinant Basigin protein could bind a variety of Gram-positive and Gram-negative bacteria. Silencing of Basigin inhibited the Dorsal signaling activated by V. parahaemolyticus infection and significantly decreased the survival rate of V. parahaemolyticus-infected shrimp. The expression levels of the antimicrobial peptides ALF1 and ALF2 were downregulated, and the phagocytosis of hemocytes was attenuated in Basigin-silenced shrimp. Similar results were observed in shrimp treated with a recombinant extracellular region of the Basigin protein that was able to compete with endogenous Basigin. Therefore, to the best of our knowledge, this study is the first to demonstrate the function of Basigin as a pathogen recognition receptor that activates NF-κB signaling for antibacterial immunity in shrimp.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Vírus da Síndrome da Mancha Branca 1 , Animais , NF-kappa B/metabolismo , Basigina , Antibacterianos , Proteínas de Artrópodes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Imunidade Inata/genética , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
13.
Fish Shellfish Immunol ; 142: 109158, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832749

RESUMO

Potassium channel modulatory factor 1 (KCMF1), an E3 ubiquitin ligase, plays a vital role in renal tubulogenesis, preeclampsia, and tumor development in mammals. Nevertheless, the function of KCMF1 in invertebrates remains to be investigated. Here, we identified KCMF1-like from Scylla paramamosian, encoding 242 amino acids with two zinc finger domains at the N-terminal. Real-time quantitative PCR analysis revealed that KCMF1-like was expressed in all tested tissues, including hemocytes, brain, mid-intestine, subcuticular epidermis, gills, muscle, heart, and stomach, with higher levels in muscle and mid-intestine. KCMF1-like was up-regulated in the hemocytes of mud crabs challenged with white spot syndrome virus (WSSV). RNA interference (RNAi) was performed to investigate the impact of KCMF1-like on the proliferation of WSSV in mud crabs. Knock-down of KCMF1-like resulted in an increase of the WSSV copy number and an impairment of the hemocytes apoptosis rate in vivo. In addition, KCMF1-like could also affect the mitochondrial membrane potential. Collectively, these results revealed that KCMF1-like might play a crucial role in the defense against virus infection in mud crab. This study contributes a novel insight into the role of KCMF1-like in the antiviral immune defense mechanism in crustaceans.


Assuntos
Braquiúros , Vírus da Síndrome da Mancha Branca 1 , Animais , Imunidade Inata/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes , Apoptose , Hemócitos , Mamíferos/metabolismo
14.
Fish Shellfish Immunol ; 141: 109075, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730076

RESUMO

Reactive oxygen species (ROS) are typically regarded as being generated by the cellular respiratory chain or by cells under pathological damage, which play a crucial role as signaling molecules in promoting hemocytes circulation and normal cellular physiological functions. In this study, the antioxidant N-acetylcysteine (NAC) was used to reduce ROS in vivo and in vitro, which to analyze the effect of ROS on innate immunity and viral infection of mud crab. The total hemocyte count (THC), phenoloxidase (PO), superoxide dismutase (SOD) activity, immune-relative genes were analyzed, respectively. Moreover, the effect of ROS on WSSV infection was analyzed by THC and hemocytes apoptosis. The data showed that NAC could effectively remove and inhibit intracellular ROS. The THC of NAC group was reduced at 12 h and 24 h compared with that of control. And the inhibition of ROS by NAC could increase the SOD activity with control group, while increased the PO activity caused by early WSSV infection. And NAC could up-regulate the expression of MCM7, JAK, TLR and proPO significantly, while down-regulate the expression of Astakine, proPO, caspase and p53. Similarly, NAC could inhibit WSSV-induced apoptosis of S. paramamosain hemocytes. The data illustrated that ROS participates in the interaction between hemocytes and virus infection by regulating innate immunity. Especially, after NAC inhibited ROS, the expression of hemocytes proliferation gene Astakine was also inhibited, which may indicate that ROS is related to the process of hemocytes proliferation. The data will show a preliminary exploration on the regulatory role of ROS in crustacean immune system.


Assuntos
Braquiúros , Viroses , Vírus da Síndrome da Mancha Branca 1 , Animais , Espécies Reativas de Oxigênio , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes , Imunidade Inata/genética , Superóxido Dismutase , Hemócitos
15.
Fish Shellfish Immunol ; 140: 108984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549875

RESUMO

Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Fosfatidilinositol 3-Quinases , Crustáceos , Transdução de Sinais , Imunidade Inata
16.
Fish Shellfish Immunol ; 141: 109039, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640125

RESUMO

White spot syndrome virus (WSSV), a double-stranded DNA virus, is harmful in aquaculture. The signal transducer and activator of transcription (STAT) has been shown to play a role during host infection with the virus, but the exact mechanism by which it acts is unclear. In this study, three STAT isoforms (MnSTAT1, MnSTAT2, and MnSTAT3) were identified in Macrobrachium nipponense. The full-length sequence of MnSTAT1 was 3336 bp, with 2259 bp open reading frame (ORF), encoding a 852 amino acids protein. The full-length sequence of MnSTAT2 was 2538 bp, and the ORF was 2391 bp, encoding 796 amino acids. The full-length sequence of MnSTAT3 sequence was 2618 bp, and the ORF was 2340 bp, encoding 779 amino acids. MnSTAT1-3 is produced by alternative last exon. MnSTAT1-3 all contain a STAT_int, a STAT_alpha, a STAT_bind, and a SH2 structure. MnSTAT1-3 are widely expressed in various tissues tested. The expression levels of MnSTAT1-3 in the intestine of M. nipponense were upregulated at multiple time points following WSSV stimulation. The expression of seven anti-lipopolysaccharide factors (ALFs) was significantly reduced with the knockdown of MnSTATs during WSSV infection. Results showed that MnSTATs regulated the expression of intestinal ALFs and was involved in the innate immunity against WSSV of M. nipponense.


Assuntos
Palaemonidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Lipopolissacarídeos/metabolismo , Proteínas de Artrópodes/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Imunidade Inata/genética , Regulação da Expressão Gênica , Filogenia
17.
Fish Shellfish Immunol ; 140: 108940, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442309

RESUMO

The family of TRIM proteins with E3 ubiquitin ligase activity served important roles in the regulation of innate immune processes, in particular antiviral and proinflammatory cytokine responses. In this study, a novel TRIM37 homolog was identified from Penaeus monodon (named PmTRIM37). The PmTRIM37 protein contained three conserved domains (one RING finger domain, a B-box, and one Coiled-coil region) at its N-terminal and one Meprin and MATH domain at its C-terminal. The MATH domain was the characteristic of TRIM37 family. PmTRIM37 has relatively high expression in immune-related tissues such as hepatopancreas, gills, lymphoid organs and hemocytes. The expression levels of PmTRIM37 in hepatopancreas and lymphoid organs were significantly up-regulated after white spot syndrome virus (WSSV) infection. Knock down of PmTRIM37 promoted WSSV replication and VP28 expression, suggesting that PmTRIM37 played a negative role in WSSV infection. Further studies revealed that PmTRIM37 positively regulated the NF-κB pathway and Antimicrobial peptides (AMP) expression during WSSV infection. These findings indicated that PmTRIM37 might restrict WSSV replication by positively regulating NF-κB pathway during WSSV infection in P. monodon.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia
18.
Fish Shellfish Immunol ; 140: 108968, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481103

RESUMO

Among trace metals, copper is essential for crustaceans' normal growth and metabolism. In the present study, an attempt was made to determine whether the addition of copper in rearing water influences the physiological and immunological responses of Penaeus monodon to white spot syndrome virus infection (WSSV). Adult P. monodon were distributed in experimental tanks and exposed to 0, 0.05, 0.1, 0.2 and 0.3 mg l-1 copper concentrations. After 14 days, the shrimps were challenged with WSSV and the biochemical/immune variables were determined on post-metal exposure day 14 and post-challenge days 2 and 5. Significant variations could be observed in the haemolymph (biochemical and immune) variables of P. monodon on exposure to copper and WSSV challenge. Shrimps exposed to copper at 0.1 mg l-1 showed higher total haemocyte count, phenol oxidase activity, nitro blue tetrazolium salt reduction, alkaline/acid phosphatase activity, total protein, carbohydrates, lipids, glucose and cholesterol besides maximum post-challenge survival. However, exposure to copper at 0.2 and 0.3 mgl-1 increased the susceptibility to WSSV infection, showing a decrease in the biochemical/immune variables. Therefore, the present study concludes that copper in ambient water induces immunomodulation and evokes physiological responses in P. monodon at sub-lethal doses. Immunostimulatory effects elicited by copper at 0.1 mg l-1 enhanced the immunocompetence and reduced the susceptibility of P. monodon to WSSV infection, conferring protection to the animals and resulting in higher survival.


Assuntos
Decápodes , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Cobre/toxicidade , Vírus da Síndrome da Mancha Branca 1/fisiologia , Imunocompetência
19.
Dev Comp Immunol ; 147: 104755, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295629

RESUMO

Mitogen-activated protein kinase kinase 4 (MKK4), serves as a critical component of the mitogen-activated protein kinase signaling pathway, facilitating the direct phosphorylation and activation of the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stresses. In the current research, we identified two MKK4 subtypes, namely SpMKK4-1 and SpMKK4-2, from Scylla paramamosain, followed by the analysis of their molecular characteristics and tissue distributions. The expression of SpMKK4s was induced upon WSSV and Vibrio alginolyticus challenges, and the bacteria clearance capacity and antimicrobial peptide (AMP) genes' expression upon bacterial infection were significantly decreased after knocking down SpMKK4s. Additionally, the overexpression of both SpMKK4s remarkably activated NF-κB reporter plasmid in HEK293T cells, suggesting the activation of the NF-κB signaling pathway. These results indicated the participation of SpMKK4s in the innate immunity of crabs, which shed light on a better understanding of the mechanisms through which MKK4s regulate innate immunity.


Assuntos
Braquiúros , Vírus da Síndrome da Mancha Branca 1 , Humanos , Animais , NF-kappa B , Vibrio alginolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , MAP Quinase Quinase 4/genética , Filogenia , Células HEK293 , Perfilação da Expressão Gênica , Imunidade Inata , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Artrópodes/metabolismo
20.
Fish Shellfish Immunol ; 139: 108881, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37279830

RESUMO

Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the innate immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were found to be regulated by WSSV infection. Knocking down of SpLITAF increased the WSSV copy number and expression of VP28 gene. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.


Assuntos
Braquiúros , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Imunidade Inata/genética , Apoptose , Peptídeos Antimicrobianos , Proteínas de Artrópodes , Filogenia , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...